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Abstract—Trifluoromethyl propargylic carbocation [I] generated from the reaction of 1-amino substituted 3-trifluoromethyl-2-prop-
ynyl trimethylsilyl ether 1 with TMSOTTf in CH,Cl, at —15 °C, followed by warming to room temperature reacted with 1.2 equiv of
substituted benzenes, RMgBr and allylsilane to give the enones 3a-1 and 5, respectively. The reaction of [I] with anisole, followed by
treatment with Grignard reagents afforded the corresponding allyl amine derivatives 7, which underwent cyclization reaction to give

indene derivatives 8 by using 2 equiv of TMSOTT.
© 2006 Elsevier Ltd. All rights reserved.

The use of trifluoromethylated building block is essen-
tial for the synthesis of trifluoromethyl substituted
molecules, which are very useful in the areas of pharma-
ceuticals, agrochemicals and material science.!™ Among
such building blocks, trifluoromethyl propargylic moie-
ties have been receiving increasing attention because of
the transformations of triple bond functionality. For
examples, trifluoromethyl propargylic alcohols*® were
utilized to give the corresponding allylic alcohols with
high stereoselectivity via Red-Al or Lindlar catalyst
reduction, in which allylic alcohols were transformed
to provide chiral 2,6-dideoxy-6,6,6-trifluorosugars.”-®
Trifluoromethyl propargylic alcohols were also reacted
with ethyl orthoacetate under acidic condition to afford
trifluoromethylated allene derivatives via Claisen rear-
rangement.’ Trifluoromethylated allene derivatives were
also obtained from the palladium-catalyzed coupling
reaction of trifluoromethylated propargyl mesylates
with organozinc reagents in the presence of a catalytic
amount of Pd(PPh;),.!° In contrast to these synthetic
utilities of trifluoromethylated propargylic building
blocks, there has been a quite limited study of the reac-
tion of trifluoromethyl propargylic carbocation with
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nucleophiles. The main reason for the limited study
seems likely due to the unstability of trifluoromethyl
propargylic carbocation species. However, Konno
et al. reported recently that trifluoromethylated propar-
gyl acetate was readily reacted with dicobaltocta-
carbonyl to form the corresponding cobalt complex, in
which dicobaltoctacarbonyl group effectively stabilizes
trifluoromethyl propargylic carbocation.!! In recent
years, we have prepared 1,1,1-trifluoro-4-(N-methoxy-
N-methyl)amino-1-trimethylsiloxy-1-phenyl-2-butyne (1)
as a source of (trifluoromethyl)ethynylation reagent,'?
in which the (N-methoxy-N-methyl)amino group could
compensate the destabilizing effect of trifluoromethyl
group and thus enhance the stability of the trifluoro-
methyl propargylic carbocation. We report in this letter
the formation and reactions of the relatively stable tri-
fluoromethyl propargylic carbocation generated from
the reaction of 1 with trimethylsilyl trifluoromethane-
sulfonate (TMSOTHT).

Our initial studies began with the reaction of 1 with
TMSOTT to figure out whether trifluoromethyl propar-
gylic carbocation will be formed or not. Treatment of
1 with TMSOTT (1 equiv) in THF at —78 °C, followed
by warming to room temperature and then quenching
with H,O resulted in the formation of trifluoromethyl-
ated enaminone 2 as a mixture of E- and Z-isomers
(E/Z=287/13) in 82% yield. A similar result was
obtained even at higher temperature (—15°C to rt).
The use of CH,Cl, as a solvent in this reaction was
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advantageous. From a mechanistic point of view, we
propose that trifluoromethyl propargylic carbocation or
its equivalent [I] was formed and then reacted with
H,O to give allenol [II], which tautomerized to 2.
Addition of H,O towards [I] regiospecifically occurred
at carbon bearing trifluoromethyl group. A plausible
mechanism is shown in Scheme 1.

To trap the intermediate [I], we examined reactions of [I]
with carbon nucleophiles under the optimized reaction
condition. When 1 was reacted with TMSOTf in
CH,Cl,'? at —15°C, followed by warming to room
temperature and then treated with benzene derivatives
having activating groups such as anisole, thioanisole
and N,N-diethylaniline at room temperature for several
hours, B-trifluoromethylated B-aryl substituted enones
3a—c were obtained as a mixture of E- and Z-isomers
in 61-96% vyields. The ortho substituted enone 4a was
obtained in 25% yield in the case of the treatment with
N,N-diethylaniline. Phenol was also reacted with [I] at
0°C for 1h to give the corresponding enone 3d in
93% yield. In contrast, the reaction of [I] with thio-
phenol or aniline under the same reaction condition
afforded B-trifluoromethyl-B-phenylthio or B-trifluoro-
methyl-B-phenylamino substituted enones 4b, 4c¢ in
93% and 14% yields, respectively. However, the reac-
tions of [I] with toluene, benzene, chlorobenzene and
trifluoromethylbenzene did not provide the desired
products 3g-j under the same reaction condition,
whereas enaminone 2 was obtained as a sole product
for every case. This result indicates that intermediate
[I]is a quite stable species which does not react with benz-
ene derivatives having deactivating group in the reac-
tion solution. The preparation of 3 was summarized in
Table 1.

NEtzCF3 o CF; O
@M%)Lph X%)L
4a 4b (X = S), 4c (X =NH)
TMS+.TMS
e §
3 TMSOTf (1 equiv _
CF5-C=C-C—N TMSOTF(1 equl) _| o _c=c-c N
[ CH3 THF, -78 °C—rt |
Ph Ph
1
H,0
H,0 \L “/OCHs HO,
——=—|CF;-C=C'C=N+ OTf
‘ \CH —TfOH b
N FsC

Scheme 1.

OCH,4 OCH;z 7
\CH3 - (TMS)gO ‘ CH3

The reaction mechanism could involve the formation of
immonium ion intermediate [III] via Friedel-Crafts
reaction of [I] with anisole, followed by reaction with tri-
fluoromethanesulfonic acid formed in the reaction pro-
cess, in which same regiospecificity was also controlled
as shown in Scheme 1. Intermediate [III] was further
reacted with H,O to give 3a. Addition of H,O towards
intermediate [II1] led exclusively to allylic hemiaminal
intermediate [IV] with perfect regioselectivity, which
underwent deamination to afford enone 3a. A plausible
mechanism for the formation of 3a is shown in Scheme
2.

A similar reaction was extended to allyl trimethylsilane
as a silicon-containing n-nucleophile, in which the nucleo-
phile reacted with [I] in an Sg2’ fashion to give the
corresponding enone 5 in 97% yield. The use of strong
nucleophiles, for examples, Grignard reagents such as
PhMgBr, MeMgBr and CH;C=CMgBr under the
milder reaction condition facilitated the formation of
enones 3. Therefore, treatment of [I] with PhMgBr
derivatives at —78 °C for 1 h provided the correspond-
ing enones 3g—j in 79-85% yields along with regioiso-
mers 6g—j (less than 6% yield). This reaction could
provide a potential method for the preparation of
enones, which cannot be prepared via Friedel-Crafts
reaction of [I] with benzene derivatives. However, the
treatment of [I] with MeMgBr under the same reaction
condition resulted in the formation of 3k and 6k in
13% and 76% yields, respectively, in which a steric factor
seems to play an important role to lead to the formation
6k instead of the formation of 3k. Treatment of [I]
with CH;C=CMgBr under the same reaction condition
resulted in the formation of 31 and 6l in 58% and 15%
yields, respectively. These trifluoromethylated enones
3, which methods are limited in the previous litera-
tures,'#17 are valuable intermediates in synthetic organic
chemistry and thus were utilized in recent years to
prepare trifluoromethylated indenes'® and allylic
alcohols.!®
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Table 1. Preparation of B-trifluoromethylated B-aryl substituted enones 3

OTM

S .
| OCHs TmsOTf (1 equiv) ~ X{) (12eauv)  h,0

X
0
X
H
3

CFsC=C (|: N\CH3 CH,Cl,, -15 °C~rt T (°C), t (h) FsC Ph

Ph

1
Compound no. T (°C) t (h) X Yield®* (%) E/Z°
3a rt 3 CH;0 96 67/33
3b It 5 CH;S 95 40/60
3c rt 15 Et,N 61° 75/25
3d 0 1 HO 93 65/35
3e 0 1 HS —d —
3f 0 1 H,N —d —
3g rt 15 CH; —° —
3h It 15 H e —
3i rt 15 Cl —* —
3 It 15 CF; —c —

#Isolated yield.
® EIZ Ratio was determined by '°’F NMR spectroscopy.
¢ 0-Et,N-Ph substituted enone 4a was obtained in 25% yield.

9 B-Phenylthio and B-phenylamino substituted enones 4b,c were obtained in 93% and 14% yields, respectively.

¢Enone 2 was obtained in 75-78% yield.
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OTMS R
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8 [ GH, CHiClp, -15°C FsC Ph 3 |
3 CHs
Ph H Ph
1 R = p-CHy-Ph 3g(85%) 69(4%)
R=Ph 3h(84%) 6h(5%)
R=p-Cl-Ph  3i(81%) 6i(6%)
R = p-CF5-Ph 3j(79%) 6§(5%)
R = Me 3K(13%) 6k(76%)
R = CHsC=C 3I(58%) 61(15%)

Finally, the reaction of intermediate [II1] with Grignard
reagents was also performed to prepare allylic amine
derivatives, which might be extremely valuable synthetic
intermediates to give trifluoromethylated indene deriva-
tives via intramolecular cyclization under acidic condi-

tion. When [III] was treated with MeMgBr, EtMgBr,
n-PrMgBr, i-PrMgBr, PhMgBr, MeC=CMgBr and
PhC=CMgBr at 0 °C, followed by stirring at room tem-
perature for 1 h, the corresponding E- and Z-isomeric
mixtures of allylic amine derivatives 7a—g were obtained
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OCH;
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in 52-94% yields. The reaction mechanism could be
quite similar to the formation of intermediate [IV] as
shown in Scheme 2. Cyclization reaction of 7a by using
the use of 2 equiv TMSOT( in CH,Cl, at room temper-
ature for 7 h provided the highest yield of indene com-
pound 8a.'” Similarly, indene compounds 8e and 8g
were obtained in 90% and 88% yields, respectively. Gen-
erally, the method for the preparation of trifluoromethyl-
ated indenes was quite limited previously and also had a
lack of generalization.?® However, our method provides
a generalized and high yield preparation of trifluoro-
methylated indenes.

Formation of trifluoromethyl propargylic carbocation
having methyl group instead of phenyl group at 1-position
in compound 1 was not successful and a messy reaction
mixture was formed under several reaction conditions.

A typical reaction procedure for the preparation of 7a is
as follows. A 25mL two-neck round bottom flask
equipped with a magnetic stirrer bar, a septum and
nitrogen tee connected to an argon source was charged
with trifluoromethylated propargyl silyl ether 1
(0.166 g, 0.5 mmol) and methylene chloride (2 mL) and
then cooled to —15°C. TMSOT(f (0.111 g, 0.5 mmol)
was added at —15 °C, followed by warming to room
temperature and then anisole (0.065 g, 0.6 mmol) was
added. After stirring at room temperature for 3 h and
then cooling to 0 °C, CH3;MgBr (3 M solution in ether,
0.65 mmol) was added. The reaction mixture was stirred
at room temperature for 1 h, quenched with saturated
NH4Cl and then extracted with methylene chloride
twice. The methylene chloride solution was dried over
anhydrous K,COj3; and chromatographed on SiO, col-
umn. Elution with a mixture of hexane and ethyl acetate
(9:1) provided 0.172 g of 7a (E/Z = 3/1) in 94% yield.
Compound 7a: Oil: '"H NMR (CDCly) & 7.47-7.22
(m, 7H, Z-isomer), 7.29-7.21 (m, 5H, E-isomer), 7.08
(s, 1H, E-isomer), 6.94-6.88 (m, 2H, Z-isomer), 6.73 (s,
IH, Z-isomer), 6.71-6.66 (m, 4H, E-isomer), 3.82
(s, 3H, Z-isomer), 3.76 (s, 3H, E-isomer), 3.43 (s, 3H,

E-isomer), 3.36 (s, 3H, Z-isomer), 2.35 (s, 3H, E-iso-
mer), 2.34 (s, 3H, Z-isomer), 1.79 (s, 3H, Z-isomer),
1.17 (s, 3H, E-isomer); YF NMR (CDCl,, internal stan-
dard CFCl3) 6 —57.63 (s, 3F, Z-isomer), —67.23 (s, 3F,
E-isomer); MS, m/z (relative intensity) 365 (M, 1), 305
(100), 227 (84), 197 (69), 177 (24), 118 (12), 91 (12), 77
(13); IR (neat) 3059, 2990, 1609, 1464, 1285, 1172,
1037 cm™!. Anal. Caled for CooHanF3NOy: C, 65.74;
H, 6.07. Found: C, 65.59; H, 6.00.
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